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Big Whorls Carry little whorls

By J.C.R. Hunt 1, J.C. Buell 2, and A.A. Wray 2

The space-time structure of homogeneous isotropic turbulence has been studied us-

ing a direct spectral simulation on a 643 mesh at a microscale Reynolds number

of Rex = 48. Steady body forces were applied to a few low-wavenumber modes

to make the flow statistically stationary. The results for the two-point space-time

correlations of velocity and pressure (Rll and Rpp) show that the auto-correlations

of u and p are positive and have about the same integral time scales, and that the

spatial correlation Rpp(r) __ Rla(0, r,0). The form of Rpp(r) and the result that

p2/(pu_)2 __ 1.0 agree fairly well with the Hinze/Batchelor (Hinze 1975) results.

The three-dimensional energy spectrum for small space-time scales of velocity and

pressure are consistent with the concept of large eddies advecting the small scales

with a random Gaussian velocity (rms value of one component is u0 ): the wavenum-

bet (k), frequency (w) and the energy spectrum £(k,w) are related to the spatial

energy spectrum E(k) by the formula

£(k,w) = E(k)exp[-½w2/(akuo)2]/(v/-_(akuo)),

where a __ 0.4-0.5. The same form is found for the pressure spectrum. Extrapolating

this result to high Reynolds number implies that in the inertial range the frequency

spectra are ¢11(w) oc (euo)2/3w-s/3 (Tennekes 1975), and Cpp(_s) _ (euo)4/s_s-7/3.

1. Introduction

1.1 Background to the project

Recent reports on the structure of turbulence and its dynamics have tended to

emphasize the representation and the dynamics of the spatial structure rather than

tile temporal structure of the turbulent velocity field. However, closer examination

of dynanfical theories (e.g., Kraichnan's, described by Leslie 1981) show that they

are always based on certain assumptions about the temporal structure, which have

not been subjected to detailed examination or computation.

The temporal structure of turbulence also needs to be understood in order to

develop models for the effects of turbulence and fluctuating pressure fields on the

generation of surface and internal waves (Carruthers & Hunt 1986) and on dispersion

of pollutants, particles and bubbles. One of the ways of developing practical models

for these problems is first to develop a stochastic representation of the velocity field.
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FIGURE 1. Flow field composed of large scale eddies and small scale eddies that

are transported by the large scales. The small eddies also deform on a larger time

scale.

The current research on the spatial structures (such as that of Moin 1987 and Moin,

Adrian & Kim 1987) needs to be supplemented by information on how the turbulent

velocity field evolves in time. (Some initial suggestions were put forward by Turfus

& Hunt 1986, but they will be superceded by the present work.)

The clearest recent account of the temporal structure of turbulence is given by

Tennekes (1975) and Tennekes & Lumley (1979). Essentially, the current under-

standing is that the largest scales of turbulence with velocity and length scales u0

and L are unsteady and change on a time scale L/uo. Meanwhile, smaller eddies on a

scale e with velocity u(e) ( defined by the structure function [lu(x) - u(x + r)12]

where Irl = f), have two time scales: the Eulerian time scale

r_(e) -,_ _/u0, (1.1a)

for the eddy to be advected by the large eddies past an observing point (moving

with the mean flow), and the Lagrangian time scale

rL(£)._£1u(£), (1.1b)

for the velocity field on a scale (l) to change as it is advected by the large scale

eddies. See figure 1.

Thus at a point (moving with the mean flow), the dominant time-dependent

phenomenon (which determines Ou/Ot) is the rapid, random movement of small

scale eddies past the observer by the large eddies. On the other hand, for a point

moving with the fluid, the only change of velocity is the slow change caused by

the dynamical processes at the scale £. These differences are best defined by the

Eulerian microscale

T(_) = [(0u/Ot)2/u-$1-1/2, (1.2a)
L / J
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and the Lagrangian microscale, following a material element,

r(L) = [(du/dt)2 /-_] -1/2 (1.2b)

For high Reynolds number turbulence these can be related to the basic time scale

L/uo by

_.(E) ,,_ Re-1/2L/uo ' (1.3a)

and

r (L) "_ Re-1/4L/uo, (1.3b)

where Re = uoL/v. Tennekes (1975) found that these estimates were consistent

with the grid turbulence measurements of Shlien & Corrsin (1974). Another impor-

tant consequence of Tennekes's analysis is that for high Reynolds number turbulence

in the inertial subrange, the frequency spectrum _11(_v) of one component of the

velocity, say ul, measured at a point (moving with the mean flow) has a form which

is different from the universal Lagrangian form

namely

¢_LI)(W) -: cL f._-2_ , (1.4a)

¢_E)(w) = CEI_,cu0 )2/a w-s/a , (1.4b)

where C_ is a constant for a given flow. Since this form depends on the large scales

which do not have (even approximately) a universal character, it is not likely that

C_ is a universal constant, unlike the constant for the one-dimensional wavenumber

spectrum ¢_1(kl) or energy spectrum E(k). The prediction (1.4b) has not to our

knowledge been properly tested experimentally or computationally.

No detailed analyses have been developed for the four-dimensional wavenumber-

frequency spectrum tensor @ij(k,w) or its equivalent energy spectrum £(k,w), de-

fined by

1

"i,(k,_)- (21r)4 / / / fui(x,t)u,(x+r,t+ r)ei(k'r+_)drd_, (1.5a)

and

£(k,_)= f qeii(k,w)dA(k).

Ikl=k

(1.5b)

Note that

£E(k) = C(k,,,)_. (1.5c)

However, Carruthers & Hunt (1986) made a rash speculation based on Tennekes's

time scale argument (in order to estimate internal wave generation) that

/;q'ij(k,,,) -_ _ij(k)_(,o + ku,), where _'_(k) = ¢_(k,,,)d,o. (1.6)
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Measurements have been made of one-dimensional space-time correlations R(r, r)

of velocity and pressure fluctuations in grid turbulence and in boundary layers

(Favre et al. 1956; Wills 1971), and in a pipe (Sabot & Comte-Bellot 1976). The

general features have been described by formulae of the form (in coordinates moving

with the mean flow)

R_a(rl,'r) _ Ral(r)F('r,r, uo,L)

where F('r = 0) = 1, and F decreases with r more slowly as r increases. See

Hinze (1975 p. 416). Similar forms are observed for fluctuating pressure. Wills

(1971) also took the Fourier transform of these measurements and calculated the

one-dimensional wavenumber-frequency spectra _bpp(kl,w). When converted into a

frame moving at the same mean speed as the travelling pressure field, he found that

his result could be expressed as

(1.7)

where f _ exp(--½ ,___Lk_ug)' and u0 is the rms value of the streamwise velocity com-

ponent (at y/_ "_ 0.5). Moser & Moin (1984) computed space-time correlations for

channel flow.

An interesting quantity that can be derived from these correlations is the Eu-

lerian time scale T_ ) (in a frame moving with the mean flow) of the i th velocity

component. [Since the measurements are not extensive enough for T (E) to be com-

puted from integrals of Rll(r), T (E) has to be estimated from the value of _" at

which R11 -_ 1/e.] The results of Favre and Moser & Moin indicate that the value

of T_i_), normalized in terms of the rms velocity and the integral length scale L_ i in

the flow direction has a range of values given by

f_(E) _.(E) __/Tii
= lii V u_/1_1'

(1.8)

where 1 < /3(E) _< 2. Snyder & Lumley (1971) inferred a value of fl(E) __ 3 from

their measurements of small particles in grid turbulence.

Using the same normalization for the Lagrangian integral time scale T(t ), defined

by

(1.9)

experiments and simulations indicate that /_(L) ___ 1 for grid turbulence (Snyder &

Lumley 1971), and boundary layer turbulence (Durbin & Hunt 1980). A random

Fourier mode representation for homogeneous turbulence has produced a value of

_(L) .._ 1/3-1/2.

So the current position is that the magnitudes of/9 (E) and f/(L) are not well

defined.
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I._ Aims of the project

The aim of the research presented here is to explore the space-time structure of

homogeneous turbulence by computing and then interpreting the two-point spectra

and correlations of the velocity and pressure fields. Many of these statistics are of

considerable practical importance, as indicated in the previous section. In partic-

ular it is of interest to compare the different time and length integral scales and

microscales for Eulerian and Lagrangian quantities, and to compare the space and

time spectra.

2. Some Theoretical Ideas for Guiding Interpretation

_.1 Velocity spectra

_.1.1 Simple non.interacting eddies

Consider a set of smooth eddies on a line, each located at a position zn, with

a spatial scale £n, a turnover time w: 1, and a random phase e,_. We consider, for

simplicity, one component of turbulence, ul ; then a typical form for ul is

N

ul(z,t) = E anexp
n=0

+¢n), (2.1)

where a, are random amplitude coefficients which are independent, -a,_am = 6,,_a_.

We assume the mean of w,_ is w---_,and its random element has variance a 2
ttJn "

The cross correlation at points z and z + r and times t and t + r, when averaged

over a length X -._ _ £n and over a sufficiently long time, is

N r2

Rll(r,r) = v/_2x Z _g" exp(- 4-_)exp(- ½a_. T2) c°s(w-_n')"
n=0

(2.2a)

or

= Rll(r, =

Then the time and space correlations are separable. Similarly the wavenumber and

frequency spectra are not linked, for this type of flow field.

_.1.2 Small eddies moved by a large-scale velocity field

Now consider a set of small eddies moved by a random large scale velocity U.

These might be the small scale components of turbulent flow. Again, take one
dimension: Let

M N

u = E E a,.,,,.,exp[i(k,x + wmt)], (2.3)
m.=-M n=-N

So in general the space-time correlation is not simply related to the spatial correla-

tion Rll(r). But, for the case of just one eddy scale L, where N = 0, R11 reduces

to

V_ 2 exp/__ r2R_(r,v) = -_-_aoL _-_) exp(- ½a_or2) cos(w0r), (2.2b)
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I Iwhere tom = Uk,,, + to,,,, an is again a set of random amplitude coefficients, and to,,_

is the frequency in tile advected frame.

Let the probability density function of/1 be p(U). Then

M N

' l
m=-M n=-N

It is interesting to consider two possibilities for p(U).

(a) V(U) is Gaussian with variance U_:

M N

Rl,(r,_') = ___ _-_ 21a,_mle_.,.e-_2k:vgei_'_. (2.5)
m=-M n=-N

Then the one-dimensional wavenumber frequency spectrum is

1

#,(k_,to)- (2_)_

M

=E
_ -M

f / 1 2 2 [2 • a 7"

rn=-M n=-N ov oo

(2.6)

For high wavenumbers, the advective time scale (klU0) -1 is much less than the

time scale for the eddies to change as they move. Consequently Ito',_l<< Ik_Uol. By

taking large enough values of N to give a dense distribution of Fourier modes, a

spatial spectrum _b(k,) from _b(k_,to) can be defined. From (2.6),

(_(kl,to) = _(k_)exp 2k2U2 (v_lk, lV0). (2.7)

Note that.

-/5/;/5_ = _(k,)dk, = _(k,,to)dk_. (2.8)
OO OO OO

' and for aIn a three-dimensional isotropic velocity field, to_ = U • k,_ + to,,,

Gaussian distribution of the 3-D large-scale velocity U, it can be shown that the

relation between the k-to energy spectrum and the k energy spectrum is

60 2

£(k,to, = E(k,exp ( 2k2U_)/(v/_kUo', (2.9,

where Uo2 = }IUI 2.

(b) The large-scale velocity has a constant magnitude (.forwards or backwards}:

_[g(U - U0) + 8(U + U0)], and this leads toIn this case p(U) =

Rn(r, _) = _ la_lJk_'e_°_ cos(_k_V0),
n
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FIGURE 2. Similarity of the length scales of velocity and pressure fields induced

by large vortices.

and

1 _ k,Uo)+ + k]Uo)]= (2.10)

2.2 Pressure

For large eddies having a form similar to vortices (such as analyzed by Townsend

1976), the large scale distribution of pressure across the eddy, say in the zl direction,

has a distribution similar to that of u2(z]) (figure 2). Consequently, the pressure

correlation Rpp(r]) is expected to have the same scale and form as R22(r]).

The pressure fluctuations at small scales have been found in previous investi-

gations (e.g. George et al. 1982) to be caused by the motions of eddies on that

scale, and not (for example) by interactions between small scales and large scales.

The former (which is observed) gives _pp(k]) oc e4/3k_T/3, while the latter gives

Cpp(k]) oc (U_/L2)e2/3k_ _'/_. Thus it is expected that, as the large scale ed-

dies advect the small eddies, they also advect the small scale pressure fluctuations.

Therefore the k-w power spectrum of pressure fluctuations is ezpected to have the
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form

2k2U2 (2.11)

This is close to the values measured by Wills (1971).

3. Method

To obtain the frequency spectra and time correlation of a turbulent velocity field,

a long time record is necessary; a decaying turbulent field is not appropriate because

the amplitude decay does not allow a long enough time record. It is necessary to

generate a statistically stationary velocity field.
The method used in these computations is to introduce a steady nonuniform force

field F(x) at the largest scale of the flow (defined to be 2_r in all three directions),
which induces a mean flow at this scale. The mean flow is unstable, allowing

instabilities to grow. This leads to a chaotic structure with motions at all scales

down to the Kolmogorov microscale. If the initial conditions are chaotic, the force

field will maintain the turbulence, but not necessarily at the original amplitude.

Given a spatially periodic flow (whose maximum scale is fixed) any steady force

distribution will eventually give rise to a stationary turbulent flow. This flow is

determined by F and the viscosity v.

The computations were performed on a N_ × Nv x Nz mesh with periodic boundary

conditions. The force spectrum Ey(k ) is chosen to have contributions from values

of k = v/2, i.e., k = (4-1,0,4-1), (4-1,4-1,0), and (0,4-1,4-1). To generate isotropic

turbulence, all the moments of the body force F(x) would have to satisfy isotropy

conditions. This could only be done approximately, by ensuring that moments up to

second order of the Fourier coefficients of F, f, satisfied isotropy. We also specified

that ]11213 = 0. F was chosen to be solenoidal to avoid the generation of large

pressure fluctuations. For each k such that [k I = v/2 the amplitude of the forcing

was set so that X/]i(k)],(k)=0.2. The viscosity v was D02O

The 3-D Navier-Stokes equations were solved under the above conditions using
1/

the spectral code of Rogallo (1981) modified to include the body force F. The

primary results of the computation were the time-dependent, 3-D spatial Fourier

coefficients of the velocity, 6, and pressure, ifi, fields, defined by

=
N.12 N,12 N,/2

kt=-N.D k2=-N,/2 k3=-N./2

_j(k, t)exp(ik- x), (3.1)

where N, = Ny = Nz = 64. A similar definition applies to/_(k, t).

After storing fij(k,t) at M time intervals Ats, the individual time series are

filtered with a cosine "window" within the period T = MAts. Fourier transforms

in time yield the 3-D space-time Fourier coefficients uj(k, wm), defined by

M/2

fij(k,t)= E _j(k, win) exp(iwrat),

rn=-M/2

(3.2)



Big Whorls Carry little whorls 85

where w,_ = 2_rm/T.

The time interval Ats used for the computation of frequency spectra and time

correlations must be small enough to resolve the shortest time variation at a point.
(g)

This minimum Eulerian time scale ¢n_ia is defined by the fast large eddies carrying,

_(E) .._ lXol/Uo.at a velocity u0, the smallest scale eddies IKol past the point, i.e., Tmin

(It is Re-_ 1/2 times the magnitude of the Eulerian microscale!) In our computations

At (based on CFL limitations) turned out to be less than " " (E)u.IT_n , thus we took

At, = 10At.

The flow was initiated by suddenly imposing the force field on a given initial

initially increasedrandom isotropic velocity field u(x, t = 0). It was found that uj

or decreased, but eventually oscillated with small amplitude about a stationary

value; then the time series were collected to obtain the statistics.

From the Fourier coefficients, space-time spectra and correlations may be com-

puted, using the normalized length (2r) of the box.

(i) The wavenumber-frequency (k,0_) energy spectrum tensor,

_ij(k,w) = ui(k,w),ij(k,w), (3.3)

and sinfilarly for qJpp(k, w).

(it) The energy spectrum tensor,

@ij(k) = fii(k,t)fi_(k,t). (3.4)

(iii) The energy spectra (summing over spherical shells in wavenumber space; the

equivalent integral expressions for a continuum of wavenumbers are given in (1.5)),

£(k'w) = E @ii(k,w), (3.5a)

_- ]<lkl___ft+½

E(k) = E (I'ii(k). (3.5b)

_-½<lkl<k+½

(iv) The one-dimensional space-time correlation,

Rij(r, 1") = E E OYij(k'w)ei(k'r+w"*")" (3.6)

k m

(v) One-dimensional spectra,

k2 k3

(3.7)

4. Results of the computations

Table 1 gives most of the major statistics of the computed turbulent flow. Note

that the Reynolds number based on the Taylor microscale, A, is only 48, so that we
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do not expect to see many features of high Reynolds number turbulence. However

the Reynolds number is large enough so that the effects of advection of small scales

can be investigated. Note also that the t__urb___ulentvelocity field is not quite isotropic;

the lack of isotropy in the moments (u_/u_ _- 1.1) for a given realization is of the

same order as that usually found in wind tunnel experiments. This probably means

that the forcing is not quite isotropic. The ratio of the integral scales L_I , L_2,

computed from the one-dimensional correlations Rl_ (r_, 0, 0), R22 (rl, 0, 0), is 1.64.

This is less than the value of 2.0 required by isotropy. By comparison the decaying

strained turbulence computed on a 1283 mesh by Rogallo (1981) and others was

effectively defined to be isotropic at its initiation.

Figure 3 shows the unfiltered and filtered time variations of typical large scale

and small scale Fourier coefficients. Note the rather sudden changes in the small

scale filtered velocity. The time scale rk for such a change is consistent with large

scales advecting the small scales (_'k "_ 27r/(u0k)).

Figure 4a shows the contours of the energy spectrum £(k,0J), and figure 4b the

various statistics of the variation of £(k,_0) with o., for different values of k. The

mean and skewness are close to zero. The standard deviation defined by

_z = [i;oo_v2£(k,w)dw/ i_°° £(k,_v)d_] 1/2 (4.1)

V/_.-_-is described by theformula tre = akuo, where u0 = u i . The flatness (or kurtosis)

is close to 3. Consequently £(k,_) can be approximated by

£(k,_) = E(k)exp
_2

2( akuo )2 / ( V/_( akuo ) ) , (4.2)

where a __ 0.51 for kLl < 10, and a __ 0.4 for kLl >_ 15 (figure 4c). A similar

result for the k-w energy spectrum for pressure has been found with ap _" 0.51 for

kL1 <_ 10, and ap _ 0.45 for kL1 > 15. This result for £pv(k,w) is in approximate

agreement with the space-time correlation measurements of Wills (1971 ) for pressure

fluctuations on the wall below a boundary layer.

An important consequence of (4.2) is that by assuming its validity at high

Reynolds number we can calculate the Eulerian frequency spectra for the veloc-

ity _b_l(w) and the pressure q_pp(w). Since ck_i(w) = _ S£(k,w)dk and E(k) =

akc_/3k -s/3, where ak is the Kolmogorov constant, we have

1 rf 5__a21a
_,,(_)_ i ,6, ak(_Uo)213.,-sla

22/3v/_

Taking a = 0.51 yields

_bli(w) = O.085ak(,Uo)2/a -s/3. (4.3)
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FIGURE 3. Typical time variation of computed Fourier coefficients over the period

of time used for frequency calculations. The real part of fti(kz,k_,k_) is shown.

The data is filtered to allow processing by discrete Fourier transform methods: the

filtering is most apparent at the interval boundaries. (a) data at low wavenumber,

fi1(1,1,1): -- unfiltered, .... filtered; (b) filtered and unfiltered data at high

wavenumber, fi2(4, 4,19).

Similarly if Evv(k ) = C_kpe2/3k -7/3 (George et al. 1984), we deduce that

jap akp(_uo)4/3_7/3.,/3
21/3v/-_

Taking ap = 0.51 yields

Cpp(w) = 0.17akp(eu0)4/3w-7/3. (4.4)

The result (4.3) has the same form as proposed by Tennekes (1975), while (4.4)

appears to be new.
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FIGURE 4. Space-time spectrum of energy. (a) Contours of the energy spectrum

£(k,to). k is normalized on L1, and _o on uo/Ll. Contours are in factors of v/i-0. (b)

Moments of the frequency distribution of the energy spectrum. Note particularly the

variance _re and the kurtosis Ke. (c) Relation between the space-time spectrum and

the space spectrum: --/_(k, w), .... (4.2). Results are from a later simulation.
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FIGURE 5. Auto-correlations in space and time for isotropic turbulence:

velocity, (b) pressure.

(a)

Figure 5 shows the longitudinal and transverse correlations of the velocity and

pressure fields. Note that for the velocity, the auto correlation curve R11 (r) has tile

same form as the longitudinal spatial correlation, R11(rl), and is positive, at least

for rl/L1 < 2.5. These curves are normalized on an integral length scale derived

from the energy spectrum (Monin & Yaglom 1971, p. 55),

//5L_ = _ k-' E( k)dk E( k )dk.

For these experiments Ll/2rr _ 0.25, i.e., about a quarter of the box size. It is

convenient to define length and time scales from these one-dimensional correlations

by a similar procedure as in many experiments. Because of the finite box size,

the one-dimensional integral scales are estimated from the value of the space or

time variable where the correlation is 1/e of the variance. So R11(r = L_I1)) --
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1.5

Rpp
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r/L1

FIGURE 6. Comparison of the unnormalized pressure auto-correlation with tile

Hinze / B atchelor theory: -- computed, .... theory of B atchelor (1951 ). Results
are from a later simulation.

= 0).
are

and

On this basis our computed longitudinal length and time scales

L_ll)= 1.25L1,

T1 E) " 1.5L1/uo.

This value of 7;'(1E) is greater than the value of 1.15L1/uo obtained by Kyle Squires

(private communication) in decaying turbulence at. Rex = 35. Both estimates are

less than the value of 3 inferred by Snyder & Lumley (1971).

The pressure time and space correlations Rpp(r) and Rpp(rl) are plotted in fig-

ure 5b. Note that Rpp(rl)/Rpp(O) has a similar form as R_2(rl, 0, 0) in that the

curves become negative when r/Ll > 1.5 for the former and r/Ll > 1.3 for the

latter. A plausible physical explanation call be based on the typical form of the

large eddies discussed in §2.2. Note that, as for the velocity, the autocorrelation of

the pressure fluctuations is positive. An important result is that the mean square

pressure fluctuation is given by

-_/(pU_o) 2 _ 1.0.

This ratio is higher than the estimates made by Batchelor (1951) for low Reynolds

number wind tunnel turbulence (0.34), and for high Reynolds number turbulence

by Hinze (1975) (0.5), and George et al. (1984) (0.42).

A significant agreement with the theory of Batchelor (1951) is shown in figure 6

where the theoretical value of Rpp(rl ) (using R_,(rl ) from a later simulation having

lower anisotropy) is compared with computational results. The agreement is quite

good except near r = 0.

The final results, figure 7, were the power spectra E1 to E4 for the four quantities:

Vp + (u. V)u, Vp, o,_ and D- For high Reynolds number turbulence, where the-_, -b-i-"
viscous terms are small, the first and third spectra should be equal and also the
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FIGURE 7. Power spectra of the terms ill tile Navier-Stokes equations.

second and fourth. Furthermore if the eddies are advected past. an observer faster

than they evolve by nonlinear or viscous processes, then following Tennekes (1975)

o___and E3(k) should be much greater than _t and E4(k) for large k However the_gt

computations showed that Es and E4 were of comparable magnitude (within 20%).

But we did find that tile ratio El/E2 increased from about 1 to 8 as kLl increased

from 8 to 36. This is consistent with the advective contribution to (u- X7)u being

much greater than the local nonlinear contribution (which largely determines Vp).

We also found that. E4 (i.e. Du-D-i) was about 2 or 3 times as great as E2 (Vp), even

for kL1 -" 20, showing that the contribution of viscous stresses to E4 and -37Duis
dominant.

These viscous stresses are probably the explanation for why E3 is of the same

order as Ea. But if the viscous stresses are so relatively large, is this consistent

with the small eddies being apparently advected by the large eddies? A possible

explanation is that the small eddies are like slowly decaying vortices advected by

the large eddies. Within the small eddies the viscous term vV2u may be greater

than the advective acceleration term (U. V)u. But the time for the decay of say an

extended line vortex with core size k -1 is much longer than (vk 2 )-1. Therefore we
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draw the surprising conclusion that, for turbulence in this Reynolds number range,

the locations of tile viscous stresses is associated with relatively large values of 0___.__Ot

suggesting that first there is not necessarily a local instantaneous balance between

tile large straining and dissipation, and second the small eddies decay as they are

advected by the large eddies. Perhaps the generation of small scale turbulence

occurs on shorter time scales than its decay.

5. Conclusions and Further Work

1. The central hypothesis to be tested in this project of large scale eddies (or

Whorls) advecting (or carrying) small scale eddies (or whorls), was supported, if

not. completely confirmed. [Perhaps we should change one word in L.F. Richardson 's

rhyme: replace 'Big whorls have little whorls ...' with '... carry ... '!]

2. The computations raised numerous questions. To clarify the advection process

we need to compute the probability distribution of the large eddies, and for the

pressure correlations the probability distribution of the strain rates. We found that

the pressure correlation agrees fairly well with the Hinze/Batchelor theory which is

based on a quasi-normality assumptions for velocity moments.

3. In these simulations the turbulence was driven by a steady forcing function F.

The generality of the results is not clear until we explore further the effect of the

magnitude and spectral distribution of F. Also, do the initial conditions matter?

However there are encouraging signs of agreement with other kinds of simulations

and with measurements. These comparisons need to be pursued.

4. The computations have given rise to some important new physical ideas; the
connection between the advection of small eddies and the advection of small scale

pressure fluctuations; the structure of the large scale pressure field; and, finally,

perhaps some insight into the temporal pattern of the movement and decay of
small scale eddies.

5. There will be several applications of these computations to other areas of tur-

bulence research, including practical applications. It will be possible to compute

the effects of turbulence on the generation of internal and surface waves, and to

develop representations of the space-time structure of turbulence, either as a 3-D

stochastic field, or by means of conditional eddy techniques. Such representations

are being used to compute the motions of particles in turbulent flows, where it is

too expensive to use direct simulations.
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Table 1

Numerical and physical parameters

Number of mesh points: 643

Number of time samples: 288

Total disk storage used: 604 Mbytes
Boxsize: 27r

Force field: F' 1 2dx= _ f Ifl = 0.69

Kinematic viscosity: v = .02

Properties of flow field
1.-:7

Velocity field: _u i = 1.94

u0 ( 1 ---_-_1/2= -gui / = 1.14

Lengthscale: L1 = _ fo k-lE(k)dk/ fo E(k)dk = 1.25

Taylor microscale: )_ = [5 fo E(k)dk/fo k2E(k)dk] 1/2 = 0.84

Kolmogorov microscale: _Kol = (v3/c) 1/4 = 0.064

Reynolds number: Rex = uo)_/v = 48

Dissipation rate: e/(u3/Ll) = (15/Rex)(L1/)_) = 0.47

a / a/23 ,=1 i 1 [kOzi/ ]
Skewness: ( 33
Normalized force: F'Ll/u_o = 0.66

'Integral' length scales estimated from 1-D correlations:

Velocity: _11r(l)/r/_l = 1.25, L_z2)/L1 = 0.76

"(1)/L1 = 0.75Pressure: Lpp

'Integral' time scales: T_E)/(L1/uo)= 1.5

T_E)/(L1/uo)= 1.3
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